対移動平均比率法

対移動平均比率法(たいいどうへいきんひりつほう、: ratio-to-moving-average method)は,過去の時系列データから,将来の数値を予測する方法の一つ。需要予測などに用いる。季節変動や曜日変動などの周期性がある場合に有効である。移動平均法の一種であり、比較的単純な方法であるが、実用的な結果を出すことが多い。竹安数博らが1997年に発表した[1]

原理

まず、過去のデータから各季節ごとの季節指数を求める。次に、傾向を延長し、それに季節指数を掛けて予測値を得る。

需要などの変動は、傾向変動循環変動季節変動、不規則変動などに分解される。

季節調整」も参照

対移動平均比率法では、時系列データ A を傾向変動 (F) と季節変動 (E) のとして捉える。1周期分(例えば1年分)のデータの平均値は、季節変動を除去した値になる。平均値を取る範囲をずらしていくと滑らかな系列(移動平均)B が得られる。そして、原データ A の平均値 B に対する比(対移動平均比率)C を季節ごとに平均した値(季節別平均値)D を正規化して、季節ごとの係数である季節指数 E を知る。

元の時系列データ A を季節指数 E で割れば、季節変動を取り除いた滑らかな系列 F が得られる(F には循環変動と不規則変動だけが残っている)。これを回帰分析して、傾向変動(トレンド)とする(傾向推定)。将来を予測するときは、まず回帰式によって傾向値 F を延長して将来の傾向値 f を推測(外挿)し、次に各季節の季節指数 E を掛けて予測値を得る。

「季節変動」は、必ずしも1年を周期とする季節に限らず、1週を周期とする曜日(曜日変動)でもよい。(竹安ら[2]は、これらを総括して「期間変動」と呼んでいる。そのとき、季節指数を「期間指数」と呼ぶ。)循環の周期が一定している変動ならば、この方法が適用できる。

手法

ここでは、1年を周期とする「季節変動」をもつ春・夏・秋・冬ごとの季節データを想定して、手法の用語を記述する。過去の数周期分のデータがあるとする。

  1. 周期性をもつ時系列の原データ A から、1周期分の移動平均の系列 B を計算する。
  2. 各季節データ A の移動平均 B に対する比率(対移動平均比率)C を計算する。
  3. 各季節ごとに対移動平均比率 C の平均値(季節別平均値)D を計算する。
  4. 季節別平均値 D を D 全体の平均値で割って、各季節の季節指数 E を得る。[3]
  5. 原データ A を季節指数 E で割り、滑らかな傾向値 F を得る。
  6. 過去の傾向値 F を(最小二乗法によって)回帰分析する。
  7. 将来の傾向値 f を(回帰式によって)推測する。
  8. 将来の推測値 f に季節ごとの季節指数 E を掛けた予測値を計算する。

実は、1周期内のデータ数(春・夏・秋・冬の場合は 4)が偶数の場合は移動平均の計算に少し工夫が必要であり、その手法は下の 3.2#周期が偶数である場合)に示す。

数値例

まず、1周期内のデータ数が奇数である場合の数値例によって、手法の主要部分の実際を示す。

周期が奇数である場合

過去3週間分の日々のデータから、次の1週間分を予測している。

1週を周期とする曜日変動のある場合の計算例とそのグラフを示す。過去の3周期分(先々週から今週まで)の日ごとのデータから、来週1週間分を予測する。

表の下にある段階 6. 傾向の推定 では、傾向値を推定する何らかの手法を用いる。ここでは、直線による回帰分析をしている。

曜日による変動がある場合の例
段階 平均
0. 原系列 A 先々週 126 87 149 127 246 276 288
先週 138 91 160 139 274 297 309
今週 147 101 174 147 289 328 341
1. 移動平均 B 先々週 -- -- -- 185.6 187.3 187.9 189.4
先週 191.1 195.1 198.1 201.1 202.4 203.9 205.9
今週 207.0 209.1 213.6 218.1 -- -- --
2. 対移動平均
 比率
  C = A/B
先々週 -- -- -- 0.684 1.313 1.469 1.521
先週 0.722 0.466 0.808 0.691 1.354 1.457 1.501
今週 0.710 0.483 0.815 0.674 -- -- --
3. 曜日別平均値 D 0.716 0.475 0.811 0.683 1.334 1.463 1.511 0.999
4. 曜日指数 E 0.717 0.475 0.812 0.684 1.335 1.464 1.512 1.000
5. 傾向値
  F = A/E
先々週 175.8 183.1 183.5 185.7 184.3 188.5 190.5
先週 192.5 191.5 197.1 203.3 205.3 202.8 204.3
今週 205.1 212.5 214.3 215.0 216.5 224.0 225.5
7. 推測値 f 来週 225.2 227.5 229.8 232.0 234.3 236.6 238.9
8. 予測値 f ×E 来週 161.4 108.1 186.5 158.7 312.8 346.4 361.2

6. 傾向の推定 - 傾向値の系列 Fx から最小二乗法によって回帰直線 f = ax + b係数を求めると、a = 2.29, b = 177.2 を得る。ここで、x はデータの番号とする (x = 0, 1, 2, ..., 20)。

7. 推測値 - 回帰直線 f = 2.29x + 177.2 を用いて、来週の傾向値データ fx を推測する (x = 21, 22, ..., 27)。

周期が偶数である場合

1周期内のデータ数が偶数である場合には、1. 移動平均 B を計算するときに少し工夫が要る。例えば、単純移動平均をさらに二つずつ平均する方法がある[1]。こうすると移動平均の項数が1つ少なくなるが、各季節の前後のデータを対称かつ均等に扱った平均値が得られる。

周期内のデータ数が偶数である場合の移動平均
段階 前々年 前年 今年
季節 春' 夏' 秋' 冬' 春" 夏" 秋" 冬"
0. 原系列 A 126  87 246 288 138  91 274 309 147 101 289 341
4項の単純
 移動平均
-- 186.8 189.8 190.8 197.8 203.0 205.3 207.8 211.5 219.5 --
1. 2項ずつの
 移動平均 B
-- -- 188.3 190.3 194.3 200.4 204.1 206.5 209.6 215.5 -- --

例えば、表の左下隅の値 188.3 は、前々年の春と前年の春'を平均した値と、夏,秋,冬の値との平均になっている。

188.3 = { 186.8 + 189.8 } / 2
      = { (春+夏+秋+冬)/4 + (夏+秋+冬+春')/4 } / 2
      = {  春    +  2×(夏+秋+冬)  +     春'}/4  / 2
      = {  春/2  +      夏+秋+冬   +   春'/2}/4  …… 秋を中心として対称
      = { (春+春')/2 +夏+秋+冬 }/4

歴史

対移動平均比率法は、竹安数博が開発し、1997年に『新しい経営数学』[1]で発表した。

竹安らは、2006年にこの手法に関しての特許を取得している[2]

脚注

  1. ^ a b c 佃純誠, 竹安数博, 村松健児『新しい経営工学』中央経済社, 1997, pp. 194-197。ISBN 978-4502408854.
  2. ^ a b 竹安数博、樋口友紀「データ予測装置、データ予測プログラム」j-platpat, 公開日:2006年12月07日(公開番号:2006331312号)。
  3. ^ 季節指数 E の平均値は、常に 1 になる。
    証明: 季節別平均値を d1, d2, …, dn とし,それらの平均値を μ とする。d1/μ, d2/μ, …, dn/μ の平均値は、(d1/μ + d2/μ + … + dn/μ)/n = (1/μ)(d1 + d2 + … + dn)/n = (1/μ)μ = 1 である。

関連項目

  • 傾向推定
  • 季節調整
  • 英語版 Seasonality - 節 3 Caluculation に 3.3 ratio-to-moving-average method が記述されている。

外部リンク

  • 特許: 竹安数博、樋口友紀「データ予測装置、データ予測プログラム」公開番号: 特開2006-331312, 公開日: 2006年12月07日。
標本調査
要約統計量
連続確率分布
位置
分散
モーメント
カテゴリデータ
推計統計学
仮説検定
パラメトリック
ノンパラメトリック
その他
区間推定
モデル選択基準
その他
ベイズ統計学
確率
その他
相関
モデル
回帰
線形
非線形
時系列
分類
線形
二次
非線形
その他
教師なし学習
クラスタリング
密度推定(英語版)
その他
統計図表
生存分析
歴史
  • 統計学の創始者
  • 確率論と統計学の歩み
応用
出版物
  • 統計学に関する学術誌一覧
  • 重要な出版物
全般
その他
カテゴリ カテゴリ