CW複体

位相幾何学において、CW複体(CWふくたい)とは、ホモトピー理論の要請を満たすためにJ. H. C. Whiteheadによって導入された位相空間の一種である。この空間は、単体複体よりも広義の概念であり、いくつかの優れた圏論的特性を備える一方、特に非常に小さい複体における計算で役立つ連結性を有する。

構成

CW複体は胞体 (cell)と呼ばれる基本要素で構成され、より厳密には、胞体がどのようにトポロジー的に張り合わせられるかを規定する。CW複体のCは「閉包有限性」(closure finite)[1]を表し、Wは「弱い位相」(weak topology)を表す。

n {\displaystyle n} 次元の閉胞体とは、 n {\displaystyle n} 次元ユークリッド空間上の閉球体 D n {\displaystyle D^{n}} に同相な空間を指す。一例として、 n {\displaystyle n} 次元空間における単体 (三次元空間なら四面体)は閉胞体であり、より一般的に言えば、凸超多面体が閉胞体に対応する。一方で、 n {\displaystyle n} 次元の開胞体は、 D n {\displaystyle D^{n}} の内部に同相な空間を指す。なお、0次元の開(および閉)胞体は、一点空間と定める。

CW複体は、ハウスドルフ空間 X {\displaystyle X} 次の2つの性質を満たす開胞体への分割 { e α k } {\displaystyle \{e_{\alpha }^{k}\}} を指す。

  • 各開胞体 e α n {\displaystyle e_{\alpha }^{n}} に対して、 n {\displaystyle n} 次元の閉球体からの連続写像 f : D n X {\displaystyle f:D^{n}\to X} が存在し、以下の2つの条件を満たす。
    • f {\displaystyle f} の定義域を D n {\displaystyle D^{n}} の内部に制限した時、これは e α n {\displaystyle e_{\alpha }^{n}} への同相写像である。
    • D n {\displaystyle D^{n}} の境界 D n {\displaystyle \partial D^{n}} は、 { e α k } {\displaystyle \{e_{\alpha }^{k}\}} に含まれる有限個の胞体の合併へと写され、この有限個の胞体の次元がいずれも n {\displaystyle n} 以下である (この条件が閉包有限性に対応する)。
  • X {\displaystyle X} の部分集合 A {\displaystyle A} に対し、 X {\displaystyle X} に含まれる任意の胞体の閉包と A {\displaystyle A} との交叉 e ¯ α n A {\displaystyle {\bar {e}}_{\alpha }^{n}\cap A} e ¯ α n {\displaystyle {\bar {e}}_{\alpha }^{n}} における閉集合となる場合、かつその場合に限り、 A {\displaystyle A} が閉集合になる (この条件が弱い位相に対応する)。

正則CW複体

とあるn次元の閉球体からCW複体全体への連続写像について、その写像の値域をXの分割に含まれる各開胞体Cの閉包に限定すると、その写像fが同型写像となる場合、このCW複体を正則であるという。

相対CW複体

CW複体の定義ではXの分割に現れるXの部分集合は全て胞体でなければならず、すなわち、各部分集合はとあるn次元空間上の開球体と同相でなければならなかった。これに対して、相対CW複体では、Xの分割に現れる部分集合のうち1つだけは胞体の性質を保つ必要がなく、この胞体の性質を持たない部分集合を特に-1次元の胞体として取り扱う。[1][2][3][4]

  • 実数の標準CW構造 として、0スケルトンの整数 Z {\displaystyle \mathbb {Z} } がある。そして1セルとして区間 { [ n , n + 1 ] : n Z } {\displaystyle \{[n,n+1]:n\in \mathbb {Z} \}} がある。同様に、上の標準CW構造 R n {\displaystyle \mathbb {R} ^{n}} からの0セルと1セルの積である立方体セル R {\displaystyle \mathbb {R} } がある。さらに、標準の立方格子 セル R n {\displaystyle \mathbb {R} ^{n}} がる。
  • 多面体 はCW複体。
  • グラフは1次元のCW複体。三価グラフは、一般的な 1次元CW複体と見なすことができる。具体的には、X が1次元のCW複体である場合、1セルの添字写像は2点空間からX への写像 f : { 0 , 1 } X {\displaystyle f:\{0,1\}\to X} 、この写像はXを 0スケルトンから切り離す。 f ( 0 ) {\displaystyle f(0)} そして f ( 1 ) {\displaystyle f(1)} Xの 0価は頂点。
  • 無限次元ヒルベルト空間 はCW複体でない。これはベール空間であるため、n個の スケルトンの可算結合として記述できない。それぞれのスケルトンは空の内部を持つ閉集合。この議論は、他の多くの無限次元空間に及ぶ。
  • 一般的な2次元CW複体の射影。[5]
  • n次元球 は、2つのセル(1つの0セルと1つのnセル)を持つCW構造を受け入れる。
  • n次元の実射影空間 は、各次元に1つのセルを持つCW構造を許可する。
  • グラスマン多様体は、シューベルトセル と呼ばれるCW構造を認める。
  • 微分可能多様体、代数および射影多様体 には、ホモトピー型のCW複体がある。
  • カスプ双曲多様体1点コンパクト化には、Epstein-Penner分解 と呼ばれる0セル(コンパクト化ポイント)が1つしかない正準CW分解がある。

出典

  1. ^ a b “近代ホモトピー論(1940年代から1960年代まで)”. 2020年5月30日閲覧。
  2. ^ Davis, James F.; Kirk, Paul (2001). Lecture Notes in Algebraic Topology. Providence, R.I.: American Mathematical Society 
  3. ^ https://ncatlab.org/nlab/show/CW+complex
  4. ^ https://www.encyclopediaofmath.org/index.php/CW-complex
  5. ^ Turaev, V. G. (1994), "Quantum invariants of knots and 3-manifolds", De Gruyter Studies in Mathematics (Berlin: Walter de Gruyter & Co.) 18
位相幾何学・トポロジー
分野
Computer graphics rendering of a Klein bottle
主要概念
  • Glossary(英語版)
  • Lists
    • トピックス(英語版)
      • 一般(英語版)
      • 代数的(英語版)
      • 幾何学的(英語版)
    • 出版物(英語版)
典拠管理データベース: 国立図書館 ウィキデータを編集
  • イスラエル
  • アメリカ