Küpfmüller's uncertainty principle

Küpfmüller's uncertainty principle by Karl Küpfmüller in the year 1924 states that the relation of the rise time of a bandlimited signal to its bandwidth is a constant.[1]

Δ f Δ t k {\displaystyle \Delta f\Delta t\geq k}

with k {\displaystyle k} either 1 {\displaystyle 1} or 1 2 {\displaystyle {\frac {1}{2}}}

Proof

A bandlimited signal u ( t ) {\displaystyle u(t)} with fourier transform u ^ ( f ) {\displaystyle {\hat {u}}(f)} is given by the multiplication of any signal u ^ _ ( f ) {\displaystyle {\underline {\hat {u}}}(f)} with a rectangular function of width Δ f {\displaystyle \Delta f} in frequency domain:

g ^ ( f ) = rect ( f Δ f ) = χ [ Δ f / 2 , Δ f / 2 ] ( f ) := { 1 | f | Δ f / 2 0 else . {\displaystyle {\hat {g}}(f)=\operatorname {rect} \left({\frac {f}{\Delta f}}\right)=\chi _{[-\Delta f/2,\Delta f/2]}(f):={\begin{cases}1&|f|\leq \Delta f/2\\0&{\text{else}}\end{cases}}.}

This multiplication with a rectangular function acts as a Bandlimiting filter and results in u ^ ( f ) = g ^ ( f ) u ^ _ ( f ) =: u ^ _ ( f ) | Δ f . {\displaystyle {\hat {u}}(f)={\hat {g}}(f){\underline {\hat {u}}}(f)=:{{\underline {\hat {u}}}(f)}{{\Big |}_{\Delta f}}.}

Applying the convolution theorem, we also know

g ^ ( f ) u ^ ( f ) = F ( ( g u ) ( t ) ) {\displaystyle {\hat {g}}(f)\cdot {\hat {u}}(f)={\mathcal {F}}((g*u)(t))}

Since the fourier transform of a rectangular function is a sinc function si {\displaystyle \operatorname {si} } and vice versa, it follows directly by definition that

g ( t ) = F 1 ( g ^ ) ( t ) = 1 2 π Δ f 2 Δ f 2 1 e j 2 π f t d f = 1 2 π Δ f si ( 2 π t Δ f 2 ) {\displaystyle g(t)={\mathcal {F}}^{-1}({\hat {g}})(t)={\frac {1}{\sqrt {2\pi }}}\int \limits _{-{\frac {\Delta f}{2}}}^{\frac {\Delta f}{2}}1\cdot e^{j2\pi ft}df={\frac {1}{\sqrt {2\pi }}}\cdot \Delta f\cdot \operatorname {si} \left({\frac {2\pi t\cdot \Delta f}{2}}\right)}

Now the first root g ( Δ t ) = 0 {\displaystyle g(\Delta t)=0} is at Δ t = ± 1 Δ f {\displaystyle \Delta t=\pm {\frac {1}{\Delta f}}} . This is the rise time Δ t {\displaystyle \Delta t} of the pulse g ( t ) {\displaystyle g(t)} . Since the rise time influences how fast g(t) can go from 0 to its maximum, it affects how fast the bandwidth limited signal transitions from 0 to its maximal value.

We have the important finding, that the rise time is inversely related to the frequency bandwidth:

Δ t = 1 Δ f , {\displaystyle \Delta t={\frac {1}{\Delta f}},}

the lower the rise time, the wider the frequency bandwidth needs to be.

Equality is given as long as Δ t {\displaystyle \Delta t} is finite.

Regarding that a real signal has both positive and negative frequencies of the same frequency band, Δ f {\displaystyle \Delta f} becomes 2 Δ f {\displaystyle 2\cdot \Delta f} , which leads to k = 1 2 {\displaystyle k={\frac {1}{2}}} instead of k = 1 {\displaystyle k=1}

See also

References

  1. ^ Rohling, Hermann [in German] (2007). "Digitale Übertragung im Basisband" (PDF). Nachrichtenübertragung I (in German). Institut für Nachrichtentechnik, Technische Universität Hamburg-Harburg. Archived from the original (PDF) on 2007-07-12. Retrieved 2007-07-12.

Further reading

  • Küpfmüller, Karl; Kohn, Gerhard (2000). Theoretische Elektrotechnik und Elektronik (in German). Berlin, Heidelberg: Springer-Verlag. ISBN 978-3-540-56500-0.
  • Hoffmann, Rüdiger (2005). Grundlagen der Frequenzanalyse - Eine Einführung für Ingenieure und Informatiker (in German) (2 ed.). Renningen, Germany: Expert Verlag. ISBN 3-8169-2447-6.
  • Girod, Bernd; Rabenstein, Rudolf; Stenger, Alexander (2007). Einführung in die Systemtheorie (in German) (4 ed.). Wiesbaden, Germany: Teubner Verlag. ISBN 978-3-83510176-0.

´